IMPORTANT FORMULAE

LIGHT:

1. For Mirrors the sign conventions are:
u (object distance) is -ve (as object is always taken on the left of mirror)
v (image distance) is -ve if the image is real (front of the mirror)
v (image distance) is +ve if the image is virtual (behind the mirror)
h (height of the object) is + ve
h^{\prime} (height of the image) is $+v e$, if the image is erect (virtual)
h^{\prime} (height of the image) is -ve, if the image is inverted (real)
The focal length of a concave mirror is taken as -ve .
The focal length of a convex mirror is taken as +ve.
Mirror formula: $\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$
Magnification: $m=\frac{h}{h}=-\frac{v}{u}$
2. For Lens the sign conventions are:
u (object distance) is -ve (as object is always taken on the left of lens)
v (image distance) is -ve if the image is on the same side as that of the object (virtual)
v (image distance) is +ve if the image is real.
h (height of the object) is $+v e$
h^{\prime} (height of the image) is +ve , if the image is erect (virtual)
$h^{`}$ (height of the image) is -ve, if the image is inverted (real)
The focal length of a concave lens is taken as -ve.
The focal length of a convex lens is taken as +ve .
Lens formula: $\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
Magnification: $m=\frac{h}{h}=\frac{v}{u}$
3. Refractive index nor $\mu=\frac{\text { speed of light in vacuum }}{\text { speed of light in the medium }}=\frac{\mathrm{c}}{\mathrm{v}}$
4. Power $=\frac{1}{f}\left(\right.$ unit $=$ diopter, $\left.1 \mathrm{D}=1 \mathrm{~m}^{-1}\right)$

EFFECTS OF CURRENT:

1. Electric current (SI unit: ampere, $1 \mathrm{~A}=1 \mathrm{Cs}^{-1}$)

$$
\mathbf{I}=\frac{\mathbf{Q}}{\mathbf{t}}=\frac{n e}{t}
$$

2. Potential difference (SI unit: volt, $1 \mathrm{~V}=1 \mathrm{JC}^{-1}$)

$$
\mathbf{V}=\frac{\mathbf{W}}{\mathbf{Q}}
$$

3. Ohm's law

$$
\begin{aligned}
& \mathrm{V} \alpha \mathrm{I} \\
& \text { or, } \frac{\mathbf{V}}{\mathbf{I}}=\text { constant } \\
& \text { or, } \frac{\mathbf{V}}{\mathbf{I}}=\mathbf{R} \\
& \mathbf{V}=\mathbf{I R}
\end{aligned}
$$

4. Resistance

$$
\text { By Ohm's law (SI unit of ohm, } 1 \Omega=1 \mathrm{VA}^{-1} \text {) }
$$

$$
\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}
$$

Or,
$\mathbf{R} \propto \mathbf{l}$
$\mathbf{R} \alpha \frac{1}{\mathbf{A}}$ or, $\mathbf{R} \alpha \frac{\mathbf{l}}{\mathbf{A}}$
$\mathbf{R}=\rho \frac{\mathbf{l}}{\mathbf{A}} \quad\left(\right.$ where, $1=$ length of the wire and $\mathbf{A}=$ area $=\pi r^{2}$ or $\left.\frac{\pi d^{2}}{4}\right)$
5. Resistivity, $\rho=R \frac{A}{l}$, (SI unit $\left.\Omega \mathrm{m}\right)$
6. Equivalent Resistance in Series
$V=V_{1}+V_{2}+V_{3}$

$\mathbf{I R}_{\mathrm{s}}=\mathbf{I}\left(\mathbf{R}_{1}+\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}}\right)$
$\Rightarrow \mathbf{R}_{\mathrm{S}}=\mathbf{R}_{1}+\mathbf{R}_{2}+\mathbf{R}_{3}$
where, $R_{s}=$ equivalent resistance in series
7. Equivalent resistance in parallel:

$$
\begin{aligned}
& \mathbf{I}=\mathbf{I}_{1}+\mathbf{I}_{2}+\mathbf{I}_{3} \\
& \text { or, } \frac{\mathbf{V}}{\mathbf{R}_{\mathrm{P}}}=\frac{\mathbf{V}}{\mathbf{R}_{1}}+\frac{\mathbf{V}}{\mathbf{R}_{2}}+\frac{\mathbf{V}}{\mathbf{R}_{3}} \quad\left(\because \text { Acc } \cdot \text { to ohm's law } \mathbf{V}=\mathbf{I R} \text { or } \mathrm{I}=\frac{\mathbf{V}}{\mathbf{R}}\right) \\
& \frac{\mathbf{V}}{\mathbf{R}_{\mathrm{S}}}=\mathbf{V}\left(\frac{1}{\mathbf{R}_{1}}+\frac{1}{\mathbf{R}_{2}}+\frac{1}{\mathbf{R}_{3}}\right) \\
& \Rightarrow \frac{1}{\mathbf{R}_{\mathrm{P}}}=\frac{1}{\mathbf{R}_{1}}+\frac{1}{\mathbf{R}_{2}}+\frac{1}{\mathbf{R}_{3}} \\
& \text { where, } \mathbf{R}_{\mathrm{P}}=\text { equivalent resistance in parallel }
\end{aligned}
$$

8. Electric energy (SI unit joule(J))
\mathbf{W} or $E=I^{2} \mathbf{R t}=\left(\frac{\mathbf{V}^{2}}{R}\right) \mathbf{t}=\mathbf{V I t}$
9. Power (SI unit watt, $1 \mathrm{~W}=1 \mathrm{~J}^{-1}$)

$$
\text { Power }=\frac{\text { Workdone }}{\text { time }}=\frac{\mathbf{W}}{\mathbf{t}}
$$

$$
\mathbf{P}=\frac{\mathbf{V I t}}{\mathbf{t}}=\mathbf{V I}=\mathbf{I}^{2} \mathbf{R}=\left(\frac{\mathbf{V}^{2}}{\mathbf{R}}\right)
$$

10.Commercial unit of Energy (kilowatt hour)

$$
1 \mathrm{~kW}=1000 \mathrm{~W}
$$

$1 \mathrm{~h}=60 \times 60=3600 \mathrm{~s}$
$\therefore 1 \mathrm{kWh}=1000 \times 3600 \mathrm{Ws}=3.6 \times 10^{6} \mathrm{~J}$

